Disposition and biotransformation of the antiretroviral drug nevirapine in humans.
نویسندگان
چکیده
The pharmacokinetics and biotransformation of the antiretroviral agent nevirapine (NVP) after autoinduction were characterized in eight healthy male volunteers. Subjects received 200-mg NVP tablets once daily for 2 weeks, followed by 200 mg twice daily for 2 weeks. Then they received a single oral dose (solution) of 50 mg containing 100 microCi of [(14)C]NVP. Biological fluids were analyzed for total radioactivity, parent compound (HPLC/UV), and metabolites (electrospray liquid chromatography/mass spectroscopy and liquid chromatography/tandem mass spectroscopy). Mean recovery of radioactivity was 91.4%, with 81.3% excreted in urine and 10.1% recovered in the feces over a period of 10 days. Circulating radioactivity was evenly distributed between whole blood and plasma. At maximum plasma concentration, parent compound accounted for approximately 75% of the circulating radioactivity. Mean plasma elimination half-lives for total radioactivity and NVP were 21.3 and 20.0 h, respectively. Several metabolites were identified in urine including 2-hydroxynevirapine glucuronide (18.6%), 3-hydroxynevirapine glucuronide (25.7%), 12-hydroxynevirapine glucuronide (23.7%), 8-hydroxynevirapine glucuronide (1.3%), 3-hydroxynevirapine (1.2%), 12-hydroxynevirapine (0.6%), and 4-carboxynevirapine (2.4%). Greater than 80% of the radioactivity in urine was made up of glucuronidated conjugates of hydroxylated metabolites of NVP. Thus, cytochrome P-450 metabolism, glucuronide conjugation, and urinary excretion of glucuronidated metabolites represent the primary route of NVP biotransformation and elimination in humans. Only a small fraction of the dose (2.7%) was excreted in urine as parent compound.
منابع مشابه
Drug-Resistant HIV-1 RT Gene Mutations in Patients under Treatment with Antiretroviral Drugs (HAART) in Iran
Abstract Background and Objective: Highly Active Antiretroviral Therapy (HAART) can effectively prevent the progression of HIV-1 replication and increase life expectancy. There are numerous causes of treatment failure and the leading one is drug resistance. Thus, we aimed to determine the HIV RT gene drug resistance mutations in patients treated with antiretroviral medications. Material...
متن کاملCharacterization of the in vitro biotransformation of the HIV-1 reverse transcriptase inhibitor nevirapine by human hepatic cytochromes P-450.
Nevirapine (NVP), a non-nucleoside inhibitor of HIV-1 reverse transcriptase, is concomitantly administered to patients with a variety of medications. To assess the potential for its involvement in drug interactions, cytochrome P-450 (CYP) reaction phenotyping of NVP to its four oxidative metabolites, 2-, 3-, 8-, and 12-hydroxyNVP, was performed. The NVP metabolite formation rates by characteriz...
متن کاملBiotransformation of nevirapine, a non-nucleoside HIV-1 reverse transcriptase inhibitor, in mice, rats, rabbits, dogs, monkeys, and chimpanzees.
The study objectives were to characterize the metabolism of nevirapine (NVP) in mouse, rat, rabbit, dog, monkey, and chimpanzee after oral administration of carbon-14-labeled or -unlabeled NVP. Liquid scintillation counting quantitated radioactivity and bile, plasma, urine, and feces were profiled by HPLC/UV diode array and radioactivity detection. Metabolite structures were confirmed by UV spe...
متن کاملQuantifying the metabolic activation of nevirapine in patients by integrated applications of NMR and mass spectrometries.
Nevirapine (NVP), an antiretroviral drug, is associated with idiosyncratic hepatotoxicity and skin reactions. Metabolic pathways of haptenation and immunotoxicity mechanisms have been proposed. NVP is metabolized by liver microsomes to a reactive intermediate that binds irreversibly to protein and forms a GSH adduct. However, no reactive metabolite of NVP, trapped as stable thioether conjugates...
متن کاملThe dual role of pharmacogenetics in HIV treatment: mutations and polymorphisms regulating antiretroviral drug resistance and disposition.
Significant intra- and interindividual variability has been observed in response to use of pharmacological agents in treatment of HIV infection. Treatment of HIV infection is limited by high rates of adverse drug reactions and development of resistance in a significant proportion of patients as a result of suboptimal drug concentrations. The efficacy of antiretroviral therapy is challenged by t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 27 8 شماره
صفحات -
تاریخ انتشار 1999